AI技术在音乐类产品中的应用场景:你听的歌是AI写的?

自动标注、平滑过渡、音乐鉴权、AI创作,当AI技术应用于音乐行业为人类的精神文化与娱乐生活带来便利和更多选择时,也是一件让人激动不已的事情。

随着深度学习算法的出现、大数据和5G技术的成熟,AI人工智能已逐渐融入我们的生产生活中,在教育、医疗、政务办公、城市管理等多个方面发挥作用。

随着AI技术在音乐行业研究及应用的深入,音乐人工智能已经不新鲜,很多新的应用和产品已经惊艳亮相。

基于对于音乐技术及产品的了解,简单梳理一下目前AI技术在音乐类产品的各类应用场景。

一.动标注

当平台曲库量达到定量级时,如果再依赖传统的为打标签模式就会花费量成本且受到主观影响较。频动标注相关技术就受到泛关注,动标注的作不仅仅只是能替代标注以达到节省成本,同时可以客观评价乐内容,因此还可以拓展到流媒体播放的乐推荐。

例如:Spodify、KKBOX都有利深度学习做推荐,其中KKBOX采频件、歌词以及户相关标注和评论等数据作为输从曲、场景及情绪等多个维度来判断乐是否满推荐的条件。般的动标注功能也和KKBOX的推荐维度类似,从曲、应场景、器乐和情绪等维度来进标注。

HFIIVE旗下曲多多(AGM)音乐标签

对于动标注,笔者也在上听到过一些不太专业的吐槽,比如之前有看到说音频自动标注可能会出现将一首歌曲的情绪同时标注为“欢乐”和“悲伤”两种情绪。

在解释这原因之前,可以简单普及下机器学习中分类器、单标签多分类任务和多标签多分类任务。

简单来说,分类器就是利已知的输和输出数据来训练,然后该分类器就会对未知的输数据进分类或输出个值。对于个分类器模型,它预测的结果是2个或于2个以上的(结果只有1个代表结果确定就不需要分类模型了)。如果可能的结果数为2称之为分类任务于2就是多分类任务;对于情绪可能有:亢、欢快、安静、悲伤等多个结果,因此情绪分类是个多分类任务。

如果认为情绪模型是个单标签多分类任务,那么绝对是不可能出现”欢乐“和”悲伤”同时出现的情况。如果同时出现“欢乐”和“悲伤”,则只能存在于多标签多分类任务。

“欢乐”和“悲伤”同时出现就定是错误的吗?也不定!

基于深度学习的乐处理式般是分段处理,也就是将乐划分为多个段然后对每个段进预测判断它可能的标签。如果歌曲情绪存在波动,比如一首歌曲的情绪从开始的“欢乐”转向了“悲伤”,那么这种情况也是完全可能出现,现实活中很多歌曲的确是存在多个情绪甚互斥的标签存在的情况。

二、平滑过渡

平滑过渡功能是近年新出现的“炫酷”功能。

简单理解,就是当歌曲快要播放完毕时下歌曲可能缝接,这种歌曲间的平滑过渡,不会让听众觉得非常突兀。

这种功能的实现,也有依赖于基于深度学习的技术。

致原理是将歌曲的末尾段和可能平滑过渡的其他歌曲的头部段作为训练样本。训练出来的模型可以预测当前输段可以过渡的下个段,然后当播放器播放歌曲尾部段的时候利该模型得到可平滑过渡的下歌曲。

三、音乐鉴权

互联网上的音乐侵权一直存在,但音乐版权方要在互联网上维护自己的权益,往往比较困难。

因为互联网具有海量的内容,而且内容形式具有复合性,比如音乐内容仅仅作为视频的背景音乐,靠人工去发现和识别,难度太大。

在这方面,AI技术的运用,已经能够实现实时监控视频、直播或播节中是否有存 在歌曲的侵权情况。

其中的原理是,将版权的曲库中歌曲提取出关键特征保存在集群数据库,然后提取待检测的频特征,并通过数据技术进快速检索数据库中是否存在相似数据。

目前,拥有类似技术的公司,除了笔者所在公司外,ACRCloud也较具有代表性。

四、AI创作

当AI进入到音乐创作层面,在互联网行业也已有不少AI音乐创作工具,Amper Music、AIVA、Jukedeck、Ecrett Music、Melodrive、等ORB Composer等。

公司层面,索尼、谷歌、百度以及人工智能非营利组织OpenAI等均在AI作曲领域有所尝试。

2016年,索尼公司使用一种名为“流机器”(Flow Machines)的软件,创作了一首披头士(Beatles)风格的旋律,然后作曲家伯努瓦卡雷(Benoit Carre)将其制作成一首完整的流行歌曲《Daddy ‘s Car》(爸爸的车)。

2018年,微软宣布第四代小冰加入到虚拟歌手市场竞争当中,并“演唱”了一首《隐形的翅膀》。

AIVA科技开发的AI作曲家“Aiva”创作摇滚乐曲《On the Edge》并与歌手Taryn Southern合作创作流行乐曲《Love Sick》;

在国内,笔者所在公司的相关产品在AI智能创作上,能够实现识曲(识别音乐作品中的音乐元素)、作词、作曲等功能,并已实现了商业化授权和应用。

(HIFIVE小嗨 AI识曲/作曲/作词)

在具体的AI智能音乐创作层面,AI作曲工具可辅助创意生成。

如英国音乐制作人Alexa Da Kid利用IBM沃森认知计算平台中的机器学习音乐生成算法创作出单曲《Not Easy》、歌手Taryn Southern与AI作曲公司Amper Music开发的工具共同创作出《Break Free》与Aiva合作创作流行乐曲《Love Sick》。这些作品都曾一度成为热播曲目。

随着越来越多AI音乐创作工具的诞生,充当音乐人的辅助,协助创作出更多优质的作品,AI作曲家的音乐创作能力也在逐渐得到认可。

当AI遇上音乐,音乐被注入了越加鲜活的生命力,智能化大潮来袭,AI+音乐,未来值得期待!


推荐文章

个多月前,21岁的贵州女孩小吴完全没有想到,自己能够在家门口找到一份心仪的且听上去有点儿“高大上”的工作。7月18日,由支付宝公益基金会、阿里巴巴人工智能实验室、中国妇女发展基金会联合发起的“AI豆(谐音‘爱豆’)计划”在贵州铜仁启动试点:通过人工智能产业释放出大量就业机会,探索“AI扶贫”新模式,让贫困群众尤其是困境女性成为“人工智能培育师”,在家门口实现就业、脱贫。经过半个多月的教学和练习,小吴与其他30名易地扶贫搬迁群众通过了“人工智能培育师”公益培训考试并顺利拿到结业证书,作为一名AI培育师开始正式接单。跟她一起工作的人中,有24名是来自大山深处的贫困妈妈和困境女性。据国家统计局公布的数据显示,截至2018年年末,全国农村贫困人口为1660万人,贫困发生率为1.7%。在今年2月举行的“宣传贯彻中央一号文件精神暨2019中国三农发展大会”上,中央农村工作领导小组办公室秘书局副局长祝卫东进一步指出,尚未脱贫的群体中,大多是老弱病残以及缺乏技能、自我发展能力弱的群众。让这些人脱贫并不容易。除易地扶贫搬迁、教育扶贫、生态扶贫等现有扶贫措施,探索新的扶贫模式也迫在眉睫。“AI扶贫”提供了一个新的思路。据了解,除为贫困地区培养相关职业人才,“AI豆计划”还将推动建立相关职业认证标准,进行产业扶持,让贫困地区实现自我造血。在家门口找到心仪的工作小吴出生于1998年,在贵阳读完中专后便留在当地工作,那时她只有17岁。几年间,她先后做过不少销售类的工作,包括婚纱摄影机构和网络销售等,但每份工作持续时间都不太长,收入也不太稳定。这两年,在政府易地搬迁扶贫政策的影响下,小吴一家和村里人一起,从大山深处搬迁到了铜仁市万山区旺家社区易地扶贫安置点。在父母的劝说下,小吴回到了家乡。“我们家姐妹三个,但都不在父母身边。搬迁之后,父母希望我回来工作,我妈妈身体有一些残疾,也需要有人照顾。”小吴告诉记者,刚回到铜仁的时候,她找到了一份比较稳定的工作,但收入很低,只有一千多块钱。对她来说,这样的工作和状态并不理想。  今年7月中旬,由支付宝公益基金会、阿里巴巴人工智能实验室联合中国妇女发展基金会发起的“AI豆计划”首个试点落地万山易地扶贫搬迁安置点,并设立全国首个人工智能产业扶贫孵化空间。学历低、劳动能力弱的女性、残疾人以及留守妇女等是该项目重点帮扶的人群。这让小吴看到了希望。据阿里巴巴集团副总裁、阿里巴巴人工智能实验室总经理陈丽娟介绍,近年来阿里在教育脱贫、女性脱贫、生态脱贫等方向的探索发现,贫困原因大多集中在缺思想、缺人才、缺产业等方面,而人工智能的快速发展不仅让相关产业释放出大量工作机会,还催生了一批AI新职业,“仅从事人工智能标注的群体已超过10万人”。“AI豆计划”正是借助人工智能产业发展释放出的大量就业机会,通过公益培训、考试认证、社会企业孵化、订单扶持等方式,帮助贫困地区培养相关职业人才,并建立“AI培育师”职业认证标准,帮助贫困人群在家门口实现就业脱贫——尤其是帮助贫困地区女性拓展就业渠道,为她们提供更多平等发展的机会。那么,从事人工智能标注的“AI培育师”工作内容是什么?“AI豆计划”万山区试点学员培训练习场景陈丽娟进一步解释说,机器要懂得人类世界,就需要像幼儿牙牙学语一般经历完整的学习和认知过程,人工智能也必须有个‘老师’手把手来培育、训练机器模型。“机器变成天才的第一步就是消化、学习海量带有标签的文字、图片、视频等内容,而所有这些素材都需要由人类进行分类和标记,由此诞生了智能时代背后的隐形者——AI标注人员,他们从事的工作就是人工智能产业链上最基础的劳动密集型环节。”以自动驾驶场景为例。自动驾驶需要采集并标注成千上万张红绿灯、路标信息,标注过程技术含量并不高,但需要细心、耐心和大量重复经验。对于这样的工作,小吴感觉很是新奇。“以前从未听说过人工智能培育师,觉得很新鲜。听老师们讲课的时候我也很感兴趣,而且我之前接触过网络,培训之后觉得这个工作很适合我,也很有前途。更重要的是,这个工作就在家门口,也方便我照顾父母。”电脑、网络、人工智能、有空调的办公室……这种当地人以前想也不敢想的工作吸引了很多人报名。据旺家社区书记罗焕楠介绍,该项目刚刚落地时前来报名参加培训的人以大中专、高中学历居多,年龄和背景跨度很大,“有建筑工人,有开流动餐车的,但在服装厂、超市、美容院等行业打工的留守妈妈、家庭主妇居多。这些人当中最小的19岁,最大的37岁,90%的人没有稳定的收入来源。” 27岁的张金红也是其中之一。一个月前,曾经在服装厂打工的她甚至没有听过“爱豆”这个词。而现在,她已经成为“AI豆计划”首批报名学员,能够通过自己的努力在家门口获得一份不错的收入。“能在老家上班多好,家里多一份收入,又方便带孩子。”抓住人工智能产业发展红利期“贫困具有一张女性面孔。”联合国《人类发展报告》指出,世界上的贫困人口中有70%是女性。在我国,由于传统观念和分工方式还普遍存在,农村贫困人口中近半数是女性。而受教育水平低、劳动技能差、无酬的家务劳动占去了农村女性大量精力和时间,让女性脱贫更为艰难。中国社会科学院学者闫坤也曾指出,女性贫困具有“传递性”,贫困妇女的子女在很大程度上也会陷入贫困境地。因此,让女性脱贫影响更为深远。支付宝公益基金会秘书长李姗表示,“AI豆计划”帮扶的重点是缺乏科技产业资源的贫困地区女性,希望为她们提供更多发展机会。而之所以将该项目取名为“AI豆计划”,是谐音英文单词Idol(偶像),希望加入该计划的贫困群众“脱贫靠双手”,自食其力,成为新农村劳动致富的楷模。在国外,贫困人群尤其贫困女性从事AI标注工作已有不少成功案例。 印度有一个名叫Kumaramputhur的小村庄,全村约有3500户人家,男女比例和识字率都低于全国平均水平。这样一个没有任何突出产业的地方,却是全球知名的AI数据标注村。村子里有一个高中都没有毕业的人指挥着一个由200多名员工组成的团队,为美国、欧洲、澳大利亚和亚洲的客户提供人工智能解决方案。其中,低学历的贫困女性占到50%。根据相关预测,到2023年年底,人工智能和机器学习相关数据准备解决方案的全球市场将从2018年的约5亿美元增至12亿美元。而在自动化工具能够有效地创建良好的标注集之前,大量人工标注的需求将长期存在。这也成为“AI扶贫”能够持续下去的重要原因。与传统扶贫项目相比,“AI豆计划”有很多亮点:首先,该项目采取“技能培训+产业孵化+订单扶持”的可持续模式,阿里人工智能实验室每年将向试点基地输送近1000万元产值标注订单;其次,阿里将建立“AI标注师”职业资格证考评体系,培训贫困人群掌握AI新职业技能,并派驻专家志愿者提供陪伴式支持;此外,该项目将精准帮扶留守妇女、困境女性等弱势人群,让贫困群众在家门口就业、增收,将人工智能产业相关的工作机会下沉到贫困地区。“在人工智能和大数据产业的发展红利期,因地制宜在贫困地区孵化相关产业,让贫困群众不仅能在家门口就业,还能掌握AI新职业技能,适应时代的科技变迁完成自我造血,这是我们成立专项基金、发起相应项目的初衷。”李姗表示。 8月6日,“AI豆计划”在万山区易地扶贫搬迁安置点举行了试点揭牌暨全国启动仪式。之所以选择贵州作为首个试点地,主要考虑两方面原因:一是尚未脱贫人口集中,当地缺乏优势产业,但有劳动力优势;二是地方政府有过科技扶贫、政企合作经验,能够快速孵化出能自我造血的社会性企业。万山区作为省级易地扶贫搬迁示范点,在“搬得出”后,还面临着群众“稳得住、能致富”的挑战,急需发展扶贫产业解决群众的就业问题。而地方政府积极探索电商、扶贫微工厂等模式,积累了一些产业孵化经验,更利于打造成功试点。“我们希望当地女性在家门口实现就业,不再迫于生计外出打工,和孩子、亲人分离,同时还能掌握一项新技能,有个人发展提升的机会。”李姗强调说,为贫困女性创造在家乡就业的机会可以在一定程度地缓解留守儿童、留守老人带来的社会问题。同时,作为有一定技术含量的工作,也能拓宽“母亲”和“孩子”两代人的眼界。构建稳定脱贫的长效机制事实上,如何利用科技企业优势,帮助未脱贫的深度贫困人口精准脱贫,帮助脱贫摘帽地区发展稳定、可持续的产业,是包括阿里在内的很多企业一直在积极探索解决的问题。在“AI豆计划”之前,阿里在技术扶贫方面已经有了很多成功的探索。如,2018年,阿里巴巴脱贫基金发起“蚂蚁好保险”项目,充分应用互联网公益保险和金融科技的力量,在云南元阳、陕西宁陕、湖北巴东等试点县,为所有建档立卡的贫困女性赠送教育健康保险,让贫困女性少有所学、老有所医。 2019年,该项目升级为“加油木兰”,通过公益宝贝、蚂蚁庄园等互联网公益产品,带动更多公众参与。阿里巴巴区块链、人工智能等新技术的应用,不仅实现了项目投保与理赔的便捷高效,而且保障了“捐给谁、捐多少、赔多少”等项目信息全程透明。此次推出的“AI豆计划”在全国范围内开创了“AI扶贫”的公益新模式。但就具体操作层面而言,AI标注工作听上去比较容易,通过培训之后就能很快上手,但实际上也有一定的门槛。作为典型的劳动密集型产业,劳动力水平决定了AI标注的质量。不过,目前中国AI标注质量良莠不齐,这与从业者鱼龙混杂、服务商大量采用兼职外包人员有很大关系。鉴于此,为推动行业规范化发展,阿里巴巴人工智能实验室将推出“AI培育师”职业考评体系,推动建立相关行业标准,并开放AI标注服务平台,通过该平台每年向试点基地至少输送产值近1000万元订单,同时呼吁全行业加入“AI豆计划”,主动释放产业红利。“我们希望它不是一个一次性的公益项目,而是可以持续下去,所以阿里人工智能实验室也会给试点地一定的订单。我们希望通过订单扶持能够真正孵化出一个产业,未来可以成长为一个小企业或者新型企业。这样的形势,是我们最愿意看到的结果。”陈丽娟表示。因此,各方的积极配合非常重要。在该项目中,支付宝公益基金会联合阿里人工智能实验室,向中国妇女发展基金会定向捐赠“AI豆计划”专项基金,优先用于贫困女性的就业扶贫工作。阿里巴巴负责提供人才培训、技术输出、职业考核认证及AI标注产业服务平台,同时向全社会开放,鼓励人工智能企业加入并进行订单扶持。妇基会在女性扶贫、女性就业创业等领域有丰富经验,将作为项目运营的核心管理方,联动全国妇联体系,推动“AI豆计划”在中西部贫困县推广、落地。而除了带动当地贫困群众就业、创业,各方也希望从项目孵化出的社会企业能将收入反哺社区,打破商业公司“中间商赚差价”模式,把产业利润投入到地方发展,因此地方政府的管理、参与也非常必要。陈丽娟谈到,在试点阶段,每个基地预计孵化培育20至50名骨干,就近覆盖50至100人就业。“未来一年,我们将在中西部贫困县加快复制10至15个基地,采取企业孵化、政府管理、NGO深度参与的模式逐步在全国落地。我们也希望国内外更多人工智能企业加入,把AI标注的订单定向输送给贫困地区,为弱势群体提供更多就业脱贫机会。” 7月30日,阿里巴巴脱贫基金发布2019上半年脱贫成绩单。报告中提到,发展产业是实现脱贫的根本之策,产业扶贫是实现脱贫最稳固、最持久、最根本的途径,要让“让贫困地区可以自己造血,实现自力更生,脱离保障性扶贫的温室”。“公益的心态、商业的手法,技术的力量。”在专家看来,帮助缺乏资源及科技产业优势的贫困地区建立起相关产业体系,构建稳定脱贫的长效机制,才是脱贫致富的根本之策。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。