远在非洲的数据标注工厂也在为人工智能打工

远在非洲的数据标注工厂也在为人工智能打工

他们也会服务中国的人工智能公司

人工智能背后不为人知的贡献者——生活在肯尼亚贫民窟的一群人。在非盈利组织Samasource的帮助下,他们为硅谷大型科技公司的人工智能研究提供数据标注服务。

我们一起来看看国外的数据标注到底是什么样的

人工智能如人们预期工作时,硅谷企业总喜欢说一切“好似魔法”。

但实则不然。魔法的背后是布兰达(Brenda),一位26岁的单身母亲。她目前居住在非洲最大的贫民窟基贝拉(Kibera),或许这里也是全球生活最艰难的社区。在这里,成千上万人住在一个比伦敦海德公园大不了多少的地方。

每一天,布兰达坐着公交车前往肯尼亚首都内罗毕东部。在那里的一栋大楼内,她和其他1000多名同事为人工智能的另一面——我们所知甚少,所见更少的一面——辛勤付出。在八小时的工作时间内,她需要负责创建训练数据,即把数据——大多数为图像——加工成计算机可以理解的形式。

布兰达(左)

布兰达先是上传一张图片,然后用鼠标跟踪里边的所有物体。人、车辆、路牌、车道标记——甚至天空,还要特别说明是晴朗的还是阴霾的天空。将数百万张这样的图片输入到人工智能系统中,意味着(比方说)一辆自动驾驶汽车可以开始“识别”现实世界中的物体。数据越多,理论上机器越智能。

在狭小的办公室里,她紧挨着身边的同事,紧盯着显示屏,放大图像,防止标错哪怕是一个像素。一名上级人员会检查他们的工作,若没有达到要求,就需要返工。速度最快、准确率最高的训练员的名字可以出现在办公室的多台电视机屏幕上以作鼓励。而最受欢迎的奖励则是:购物券。

“你可以做一些与众不同的事情,”当我拜访她时,布兰达告诉我说。她和自己的女儿,兄弟还有母亲一起蜗居在一间拥挤的小房子里。“我现在的工作,让我相信我的努力正为未来的某些人提供帮助。”

贫民窟学校

布兰达的雇主是Samasource。这是一家总部位于旧金山的公司,客户包括谷歌、微软、Salesforce和雅虎等。这些客户大多数都不会希望讨论他们与Samasource合作的细节本质——因为大多与未来项目有关——但可以说,在贝罗毕这栋大楼里准备的数据,构成了硅谷一众大公司在人工智能领域得以开展研究的重要一部分。

布兰达在标注数据。

这种技术进步或许永远都不可能出现在基贝拉这样的地方。作为非洲最大的贫民窟,这里有太多亟需解决的问题,比如缺少清洁淡水,以及众所周知的卫生危机。但这不代表人工智能不会在这里产生积极的影响。当我们在这个下雨天驱车前往基贝拉少有的几栋永久性建筑之一时,我们发现,这栋位于铁路线附近的建筑虽残破不堪,但显然自殖民以来经常性为人们所使用。

大约一年前,这栋建筑是扔石头的暴徒与军队之间的分界线。今天,它已经成了一个蓬勃发展的活动中心,里边有一个媒体学校和工作室,有一个自助餐厅;而在楼上的一个房间里,满满当当的都是台式机电脑。在这里,吉迪恩·恩尼欧(Gideon Ngeno)教授向25名左右学生传授个人计算机的基础使用知识。

在这个过程中有趣的一点是:哪怕是在基贝拉这样的地方,人们的数字化素养其实不低。这里,智能手机十分普遍,其它所有商店都有充电器和手机配件等出售,并且人们会使用移动支付系统MPesa来购买这些东西。

为自动驾驶做数据标注的范围包括人、车辆、路牌、车道标记——甚至天空。

但非洲的大多数地区都没有经历过台式机电脑的年代。键盘和鼠标的组合对他们来说完全是一种新奇陌生又复杂的体验。一名Samasource的团队成员告诉我说,在被要求搜索互联网上的信息时,她经常观察到有学员不是看着电脑,而是拿起他们的手机。

在这里教授的课程则是为那些希望继续在Samasource等数字经济公司工作的人专门设计的。学费为500肯尼亚先令(5美元左右)。对那些经常生活在贫困线以下的人来说,这个费用也还可以承受。公司一开始是免费提供课程的,但我后来得知,由于没有经济上的付出,考勤(和上课认真程度)都不太理想。

恩尼欧教授说,目前上课最大的困难是噪音——就在我们说话的间隙,一群小孩子发生阵阵吵闹声。而在外边,又是一个人来人往十分嘈杂的集市。

适合加州的园区

相比之下,Samasource在内罗毕的办公室位于一处发展形势比较好的位置。公司位于一商务园区建筑内,总共占据四层楼,拥有大量用于数据训练的计算机。

数据标注可以让一辆自动驾驶汽车开始“识别”现实世界中的物体。

如果不看窗外景色,你恐怕会以为自己身处于一家硅谷科技公司内部。墙上贴着瓦楞铁皮,这种装饰方式放在加州的话算得上走在时髦前沿。但是,提醒你这是在非洲——而不是加州——的一点是:大部分工人(近75%)来自平民窟。

最令人印象深刻的是,Samasource克服了大多数硅谷企业努力想要解决的问题。近半数的员工为女性,这在母亲同时也负担家庭经济的国家,实属了不起。在这里,有哺乳室,长达90天的产假,以及灵活的轮班模式。这些均让这家公司不仅在肯尼亚,就是在全球,也是一个出色的榜样。

“人们常说,男人工作养家,”人力资源负责人海伦·萨瓦拉(Hellen Savala)说,“但女人工作的话,她不仅养活自己家,也会帮助更大的家庭。这样的话,你就会拥有更大的影响力。”

“不可能成功”

这种平衡不仅只存在于入门级工作中间。在旧金山的Mission District,在比肯尼亚办公室小很多的办公室里,Samasource的首席执行官蕾拉·焦纳赫(Leila Janah)谈及如何让公司管理层女性占大多数时莞尔一笑。她说:

“在硅谷,尤其是在人工智能领域,这样的情况实属罕见。但我们认为这没什么特别的。这也是一种竞争优势。”

蕾拉·焦纳赫(右)

Samasource成立于2008年。公司早期并不受待见。在美国经济衰退期间,大量向发展中国家外包工作并不受人欢迎,可以说现在仍不受欢迎。

而那些发自内心欣赏公司理念的人则又担心的是,发展中国家的工人缺乏必需的数字技能,担心他们的工作达不到科技巨头们愿意接受的标准。

“科技圈里和慈善界的有识之士都说这是一个非常好的想法,但是它不可能成功,”焦纳赫回忆说。今天,Samasource是东非同类型组织中最大,同时在亚洲和北美均设有机构。

廉价劳动力

焦纳赫自豪地表示,公司在准确性和安全性方面的记录,是赢得谷歌等大公司合同的重要因素。但毫无疑问,这些公司愿意与Samasource合作的另一个明显动机是,这里有全球最廉价的劳动力,并且当地人迫切需要稳定的工作。

Samasource希望帮助的目标是,目前每天薪酬低于或刚达2美元,并且还是从事所谓的“怪异”地下经济或危险职业的人。Samasource可以提供每天约9美元的薪酬。这对当地人来说已经是了不得的飞跃,虽然跟硅谷相比仍微不足道。

吉迪恩·恩尼欧向学生传授个人计算机的基础使用知识。

“确实,它有很高的成本效益,”焦纳赫说,“但我们工作中的一个关键点在于,我们不会提供可能破坏当地劳动市场的薪酬水平。如果我们给出的薪酬过高,我们会给整个社会带来麻烦。比如,可能会对我们员工所生活的社区的住房成本、还有食物成本等带来潜在负面影响。”

当然还有一个问题是,如果这种工作不再有需求会发生什么情况。Samasource的主要业务是为自动化系统提供数据。那么,如果创建数据的过程也能够自动化之后,会怎样呢?

“这是一个关乎几十亿美元的科技问题,我相信每一个人心中多少都有类似担忧,”焦纳赫说,“我认为,在这个问题上,媒体有炒作过度之嫌。但你要是跟开发这些算法的数据科学家们深入交流后,你会发现机器远没有大多数人想象的那么智能。我们仍需要训练数据很长一段时间。”

“这份工作改变了我的方方面面”

数据训练专家其实是一项极其无聊的工作、充满了重复性、永没有尽头的任务。在镜头之外,有些员工会讨论如何面对快速工作以实现公司指标的压力,因而休息时间也大大减少。有些Samasource的工人现在虽然是自由职业者,可以在任何地方工作,但每当工作时都会一个网络摄像头监视他们的工作。

伊德里斯·阿布迪(左)

我们在办公室内看到的所有工人都没有得到任何适当的符合人体工程学的支持,经常伏在电脑前连续疯狂点击鼠标数小时——这对眼睛和身体都会造成一定压力。公司表示会考虑解决这个问题。

对工作的抱怨在这个行业内并不少见,不过时常会得到快速的跟进和解决。

Samasource表示,公司在发展中国家至少影响了近5万人;他们要么在Samasource工作,要么他们的家人在Samasource工作。根据公司对前员工进行的问卷调查,公司发现近84%的前员工会选择接受更正式的工作,或接受高等教育。

其中一个从此走向成功的员工叫伊德里斯·阿布迪(Idris Abdi)。25岁的阿布迪在工作后,得以搬离贫民窟。

“这份工作改变了我的……方方面面,”他说,“改变了我的认知,它让我看到未来的希望。”(小白)

看到他们的,我们才知道我们的数据标注工作室比他们好多了。


推荐文章

人工智能行业研究报告围涵盖AI基础技术及终端产品研究范围:人工智能是一门综合了计算机科学、生理学、哲学的交叉学科。凡是使用机器代替人类实现认知、识别、分析、决策等功能,均可认为使用了人工智能技术。作为一种基础技术,人工智能在很多行业都有用武之地。既有人工智能+基础行业的概念(如人工智能+金融=Fintech),也有其具体应用行业的概念(比如机器人)。按照技术应用的不同场景,可以将人工智能分为基础技术类及终端产品类,本报告研究范围涵盖以下领域:研究目的:本报告将集中探讨:„ 人工智能行业整体的发展现状与技术发展趋势„ 各细分领域投融资热度与技术成熟度„ 巨头在人工智能领域的布局与策略„ 各应用领域市场规模、竞争格局、进入壁垒、产业链上下游构成„ 行业标杆的商业模式、核心竞争力、未来发展预期目 录 Contents一、人工智能行业驱动力1. 行业驱动——数据量、运算力、算法技术2. 政策法规3. 投资热度国际投资热度分析国内投资热度分析国内公司运营数据分析二、人工智能产业链与巨头布局分析1. 产业链构成2. 巨头布局开源平台布局芯片布局技术布局一、人工智能行业概述三、人工智能基础应用介绍与典型公司分析1. 语音识别2. 语义识别3. 计算机视觉目 录 Contents五、人工智能在各行业的应用介绍与典型公司分析1. 机器人2. AI+金融3. AI+医疗4. AI+安防5. AI+家居六、人工智能芯片介绍与典型公司分析六、人工智能行业趋势展望1. 人工智能各行业综述2. 人工智能当前发展瓶颈四、人工智能芯片介绍与典型公司分析1. 人工智能芯片适用性分析GPUFPGAASIC2. 人工智能芯片产业链分析3. 人工智能芯片典型公司分析人工智能行业概述CHAPTER 1 • 行业驱动——数据量、运算力、算法技术• 政策法规• 投资热度国际投资热度分析国内投资热度分析国内公司运营数据分析636Kr-人工智能行业研究报告2017年2月数据量、运算力和算法模型是影响人工智能行业发展的三大要素。2000年之后,数据量的上涨、运算力的提升和深度学习算法的出现极大的促进了人工智能行业的发展。• 海量数据为人工智能发展提供燃料要理解数据量的重要性,得先从算法说起。数据量和算法可以分别比作人工智能的燃料和发动机。算法是计算机基于所训练的数据集归纳出的识别逻辑,好的算法模型可以实现精准的物体和场景识别。数据集的丰富性和大规模性对算法训练尤为重要。因此可以说,实现机器精准视觉识别的第一步,就是获取海量而优质的应用场景数据。以人脸识别为例,训练该算法模型的图片数据量至少应为百万级别。2000年以来,得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生并存储的数据量急剧增加,这为通过深度学习的方法来训练计算机视觉技术提供很好的土壤。IDC数据显示,从2011年起,全球所产生的数据量已达到ZB级别(1ZB约为10亿GB ),海量的数据将为计算机视觉算法模型提供远远不断的素材。而关于数据量对提高算法准确率方面的重要性,更有学者提出:“It’s not who has the best algorithm that wins. It’s who has the most data. ”行业驱动力 · 数据量海量数据为人工智能发展提供燃料大数据训练模型 应用于具体场景算法模型 场景应用01020304050来源:IDC,36氪研究院2020数据量与准确率之间的关系 2009-2020年全球总体数据量(单位:ZB)20090%10%20%30%40%50%60%70%80%90%100%100 200 300 400 500 600 700 800 900 1000测试字符数量Window Memory-BasedPerceptron Naïve Bayes说明:window、memory-based、perceptron、naive bayes 均为不同算法来源:Stanford机器学习公开课,36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析准确率736Kr-人工智能行业研究报告2017年2月人工智能领域是一个数据密集的领域,传统的数据处理技术难以满足高强度、大数据的处理需求。 AI芯片的出现让大规模的数据效率大大提升,加速了深层神经网络的训练迭代速度,极大的促进了人工智能行业的发展。AI算法的处理需要大量的矩阵计算操作,因此特别适合使用并行运算芯片进行数据处理。而传统的CPU一次只能同时做一两个加减法运算,无法满足并行运算的需求。目前,出现了GPU、NPU、FPGA和各种各样的AI-PU专用芯片。而其中, 出现最早的GPU为人工智能的发展做出了巨大的贡献。擅长并行计算的GPU大幅提升机器学习效率。在GPU出现之前,算法运行的速度是很慢的,即使是一个简单的神经网络数据的培训,也得花费几天、甚至几周的时间。 1999 年,Nvidia 公司在推销Geforce 256 芯片时,提出了GPU( 图像处理器) 概念。GPU是专为执行复杂的数学和集合计算而设计的数据处理芯片。它的出现让并行计算成为可能,对数据处理规模、数据运算速度带来了指数级的增长,极大的促进人工智能行业,尤其计算机视觉领域的发展。GPU与传统CPU相比,在处理海量数据方面有压倒性的优势。 据Rajat Raina 与吴恩达的合作论文 “用 GPU 进行大规模无监督深度学习” 显示,在运行大规模无监督深度学习模型时,使用 GPU 和使用传统双核 CPU 在运算速度上的差距最大会达到近七十倍。在一个四层,一亿个参数的深度学习网络上,使用 GPU 将程序运行时间从几周降低到一天。今天,数据处理速度不再成为制约计算机视觉发展的主要瓶颈。想要发挥专用芯片的计算优势,需要芯片结构和软件算法两者相匹配。目前的趋势是,随着对人工智能各类应用需求的不断增强,专门用于加速人工智能应用的AI-PU或将成为计算机另一个标配组件。行业驱动 · 运算力运算力的提升大幅推动人工智能发展世界上第一款GPU-GeForce 256 中科寒武纪即将投产的 “寒武纪”NPU Altera的高端FPGA 产品 Stratix 101.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析836Kr-人工智能行业研究报告2017年2月在深度学习出现之前,机器学习领域的主流是各种浅层学习算法,如神经网络的反响传播算法(BP算法)、支撑向量机(SVM)、Boosting、Logistic Regression等。这些算法的局限性在于对有限样本和计算单元的情况下对复杂函数的表示能力有限,对复杂数据的处理受到制约。以计算机视觉为例,作为一个数据复杂的领域,浅层学习算法的识别准确率并不高。该类识别原理多为通过寻找合适的特征来让机器辨识物品状态,由于这个处理逻辑是浅层的,不能穷举各种复杂的情境,因而算法拟合的准确率不高。深度学习突破人工智能算法瓶颈。2006年,Geoffrey Hinton 和合作者发表论文,“A fast algorithm for deep belief nets”,此后“Deep Learning(深度学习)”的概念被提出。以计算机视觉为例,深度学习出现之前,基于寻找合适的特征来让机器辨识物体状态的方式几乎代表了计算机视觉的全部。尽管对多层神经网络的探索已经存在,然而实践效果并不好。深度学习出现之后,计算机视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流。即,机器从海量数据库里自行归纳物体特征,然后按照该特征规律识别物体。图像识别的精准度也得到极大的提升,从70%+提升到95%。在短短几年时间里,深度学习颠覆了语音识别、语义理解、计算机视觉等基础应用领域的算法设计思路,逐渐形成了从一类训练数据出发,经过一个端到端的模型,直接输出最终结果的一种模式。由于深度学习是根据提供给它的大量的实际行为(训练数据集)来自我调整规则中的参数,进而调整规则,因此在和训练数据集类似的场景下,可以做出一些很准确的判断。行业驱动力 · 算法深度学习突破人工智能算法瓶颈72.00% 74.50%84.70%89.00%93.00% 95.00%60%70%80%90%100%2010 2011 2012 2013 2014 20152010-2015年 ImageNet 比赛图像识别准确率注释:ImageNet是计算机视觉系统识别项目。来源:36氪研究院过去 现在 未来Google translate语义识别准确率60%83.4% …注释:Google translate是语义识别项目。来源:36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析936Kr-人工智能行业研究报告2017年2月 • 其他国家人工智能相关政策各国均在政策层面强调和推动人工智能的发展。其中,美国侧重于研发新型脑研究技术;欧盟主攻以超级计算机技术来模拟脑功能;日本则聚焦以动物为模型研究各种脑功能和脑疾病的机理。政策法规 · 国外政策加码,人工智能发展如火如荼国家 相关措施美国• 2013 年4 月,美国正式公布“推进创新神经技术脑研究计划”(BRAIN)。得到政府拨款1.1 亿美元,覆盖美国国家卫生研究院(HIN)、国防部高级研究项目局、国家科学基金会。• 2014 年HIN 小组制定了未来十年详细计划,预计每年投入3-5 亿美元开发用于监测和映射大脑活动和结构的新工具,十年计划共花费45 亿美元。欧盟2013 年初,欧盟宣布了未来十年的“新兴旗舰技术项目”——人脑计划(HBP),该项目汇聚了来自24 个国家的112 家企业、研究所和高校等机构,总投资预计将达到12 亿欧元。计划在2018 年前开发出第一个具有意识和智能的人造大脑.日本2014 年9 月启动大脑研究计划Brain/MINDS。该计划为期10 年,由日本理化学研究所主导实施,旨在理解大脑如何工作以及通过建立动物模型,研究大脑神经回路技术,从而更好地诊断以及治疗大脑疾病。来源:36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析1036Kr-人工智能行业研究报告2017年2月 • 国内人工智能相关政策国内近几年也出台了相关扶植人工智能发展的政策,积极推动人工智能在各个细分领域的渗透。2016年5月,国家四部委更是颁布《 “互联网+”人工智能三年行动实施方案》,明确提出要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平。政策法规 · 国内政策加码,人工智能发展如火如荼实施时间 颁布主体 法律法规 相关内容2015.5 国务院 《中国制造2025》提出“加快发展智能制造装备和产品”,指出“组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,统筹布局和推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。”2015/7/4 国务院《国务院关于积极推进“互联网+”行动的指导意见》明确提出人工智能作为11个重点布局的领域之一,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用。2015/7/9 中央办公厅、国务院《关于加强社会治安防控体系建设的意见》加大公共安全视频监控覆盖,将社会治安防控信息化纳入智慧城市建设总体规划,加深大数据、云计算和智能传感等新技术的应用。2016.1 国务院 《“十三五”国家科技创新规划》智能制造和机器人成为“科技创新-2030 项目”重大工程之一。2016/3/18 国务院《国民经济和社会发展第十三个五年规划纲要(草案)》人工智能概念进入“十三五”重大工程。2016/5/18国家发展改革委、科技部、工业和信息化部、中央网信办 《“互联网+”人工智能三年行动实施方案》明确了要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平,并且政府将在资金、标准体系、知识产权、人才培养、国际合作、组织实施等方面进行保障。1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析1136Kr-人工智能行业研究报告2017年2月 • 融资规模与成立公司数量总览咨询公司Venture Scanner统计,截止2016年Q2,全球人工智能公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。而人工智能创投金额在5年间增长了12倍。投资热度 · 全球全球AI领域融资金额5年增长12倍62 96 66 68 64 138 125 102 186 283 211 141 321 555 394 942 769 398 911 485 6361,04911211322 2038 37 38 43 50634770 77 84 809284120100134

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。