远在非洲的数据标注工厂也在为人工智能打工

远在非洲的数据标注工厂也在为人工智能打工

他们也会服务中国的人工智能公司

人工智能背后不为人知的贡献者——生活在肯尼亚贫民窟的一群人。在非盈利组织Samasource的帮助下,他们为硅谷大型科技公司的人工智能研究提供数据标注服务。

我们一起来看看国外的数据标注到底是什么样的

人工智能如人们预期工作时,硅谷企业总喜欢说一切“好似魔法”。

但实则不然。魔法的背后是布兰达(Brenda),一位26岁的单身母亲。她目前居住在非洲最大的贫民窟基贝拉(Kibera),或许这里也是全球生活最艰难的社区。在这里,成千上万人住在一个比伦敦海德公园大不了多少的地方。

每一天,布兰达坐着公交车前往肯尼亚首都内罗毕东部。在那里的一栋大楼内,她和其他1000多名同事为人工智能的另一面——我们所知甚少,所见更少的一面——辛勤付出。在八小时的工作时间内,她需要负责创建训练数据,即把数据——大多数为图像——加工成计算机可以理解的形式。

布兰达(左)

布兰达先是上传一张图片,然后用鼠标跟踪里边的所有物体。人、车辆、路牌、车道标记——甚至天空,还要特别说明是晴朗的还是阴霾的天空。将数百万张这样的图片输入到人工智能系统中,意味着(比方说)一辆自动驾驶汽车可以开始“识别”现实世界中的物体。数据越多,理论上机器越智能。

在狭小的办公室里,她紧挨着身边的同事,紧盯着显示屏,放大图像,防止标错哪怕是一个像素。一名上级人员会检查他们的工作,若没有达到要求,就需要返工。速度最快、准确率最高的训练员的名字可以出现在办公室的多台电视机屏幕上以作鼓励。而最受欢迎的奖励则是:购物券。

“你可以做一些与众不同的事情,”当我拜访她时,布兰达告诉我说。她和自己的女儿,兄弟还有母亲一起蜗居在一间拥挤的小房子里。“我现在的工作,让我相信我的努力正为未来的某些人提供帮助。”

贫民窟学校

布兰达的雇主是Samasource。这是一家总部位于旧金山的公司,客户包括谷歌、微软、Salesforce和雅虎等。这些客户大多数都不会希望讨论他们与Samasource合作的细节本质——因为大多与未来项目有关——但可以说,在贝罗毕这栋大楼里准备的数据,构成了硅谷一众大公司在人工智能领域得以开展研究的重要一部分。

布兰达在标注数据。

这种技术进步或许永远都不可能出现在基贝拉这样的地方。作为非洲最大的贫民窟,这里有太多亟需解决的问题,比如缺少清洁淡水,以及众所周知的卫生危机。但这不代表人工智能不会在这里产生积极的影响。当我们在这个下雨天驱车前往基贝拉少有的几栋永久性建筑之一时,我们发现,这栋位于铁路线附近的建筑虽残破不堪,但显然自殖民以来经常性为人们所使用。

大约一年前,这栋建筑是扔石头的暴徒与军队之间的分界线。今天,它已经成了一个蓬勃发展的活动中心,里边有一个媒体学校和工作室,有一个自助餐厅;而在楼上的一个房间里,满满当当的都是台式机电脑。在这里,吉迪恩·恩尼欧(Gideon Ngeno)教授向25名左右学生传授个人计算机的基础使用知识。

在这个过程中有趣的一点是:哪怕是在基贝拉这样的地方,人们的数字化素养其实不低。这里,智能手机十分普遍,其它所有商店都有充电器和手机配件等出售,并且人们会使用移动支付系统MPesa来购买这些东西。

为自动驾驶做数据标注的范围包括人、车辆、路牌、车道标记——甚至天空。

但非洲的大多数地区都没有经历过台式机电脑的年代。键盘和鼠标的组合对他们来说完全是一种新奇陌生又复杂的体验。一名Samasource的团队成员告诉我说,在被要求搜索互联网上的信息时,她经常观察到有学员不是看着电脑,而是拿起他们的手机。

在这里教授的课程则是为那些希望继续在Samasource等数字经济公司工作的人专门设计的。学费为500肯尼亚先令(5美元左右)。对那些经常生活在贫困线以下的人来说,这个费用也还可以承受。公司一开始是免费提供课程的,但我后来得知,由于没有经济上的付出,考勤(和上课认真程度)都不太理想。

恩尼欧教授说,目前上课最大的困难是噪音——就在我们说话的间隙,一群小孩子发生阵阵吵闹声。而在外边,又是一个人来人往十分嘈杂的集市。

适合加州的园区

相比之下,Samasource在内罗毕的办公室位于一处发展形势比较好的位置。公司位于一商务园区建筑内,总共占据四层楼,拥有大量用于数据训练的计算机。

数据标注可以让一辆自动驾驶汽车开始“识别”现实世界中的物体。

如果不看窗外景色,你恐怕会以为自己身处于一家硅谷科技公司内部。墙上贴着瓦楞铁皮,这种装饰方式放在加州的话算得上走在时髦前沿。但是,提醒你这是在非洲——而不是加州——的一点是:大部分工人(近75%)来自平民窟。

最令人印象深刻的是,Samasource克服了大多数硅谷企业努力想要解决的问题。近半数的员工为女性,这在母亲同时也负担家庭经济的国家,实属了不起。在这里,有哺乳室,长达90天的产假,以及灵活的轮班模式。这些均让这家公司不仅在肯尼亚,就是在全球,也是一个出色的榜样。

“人们常说,男人工作养家,”人力资源负责人海伦·萨瓦拉(Hellen Savala)说,“但女人工作的话,她不仅养活自己家,也会帮助更大的家庭。这样的话,你就会拥有更大的影响力。”

“不可能成功”

这种平衡不仅只存在于入门级工作中间。在旧金山的Mission District,在比肯尼亚办公室小很多的办公室里,Samasource的首席执行官蕾拉·焦纳赫(Leila Janah)谈及如何让公司管理层女性占大多数时莞尔一笑。她说:

“在硅谷,尤其是在人工智能领域,这样的情况实属罕见。但我们认为这没什么特别的。这也是一种竞争优势。”

蕾拉·焦纳赫(右)

Samasource成立于2008年。公司早期并不受待见。在美国经济衰退期间,大量向发展中国家外包工作并不受人欢迎,可以说现在仍不受欢迎。

而那些发自内心欣赏公司理念的人则又担心的是,发展中国家的工人缺乏必需的数字技能,担心他们的工作达不到科技巨头们愿意接受的标准。

“科技圈里和慈善界的有识之士都说这是一个非常好的想法,但是它不可能成功,”焦纳赫回忆说。今天,Samasource是东非同类型组织中最大,同时在亚洲和北美均设有机构。

廉价劳动力

焦纳赫自豪地表示,公司在准确性和安全性方面的记录,是赢得谷歌等大公司合同的重要因素。但毫无疑问,这些公司愿意与Samasource合作的另一个明显动机是,这里有全球最廉价的劳动力,并且当地人迫切需要稳定的工作。

Samasource希望帮助的目标是,目前每天薪酬低于或刚达2美元,并且还是从事所谓的“怪异”地下经济或危险职业的人。Samasource可以提供每天约9美元的薪酬。这对当地人来说已经是了不得的飞跃,虽然跟硅谷相比仍微不足道。

吉迪恩·恩尼欧向学生传授个人计算机的基础使用知识。

“确实,它有很高的成本效益,”焦纳赫说,“但我们工作中的一个关键点在于,我们不会提供可能破坏当地劳动市场的薪酬水平。如果我们给出的薪酬过高,我们会给整个社会带来麻烦。比如,可能会对我们员工所生活的社区的住房成本、还有食物成本等带来潜在负面影响。”

当然还有一个问题是,如果这种工作不再有需求会发生什么情况。Samasource的主要业务是为自动化系统提供数据。那么,如果创建数据的过程也能够自动化之后,会怎样呢?

“这是一个关乎几十亿美元的科技问题,我相信每一个人心中多少都有类似担忧,”焦纳赫说,“我认为,在这个问题上,媒体有炒作过度之嫌。但你要是跟开发这些算法的数据科学家们深入交流后,你会发现机器远没有大多数人想象的那么智能。我们仍需要训练数据很长一段时间。”

“这份工作改变了我的方方面面”

数据训练专家其实是一项极其无聊的工作、充满了重复性、永没有尽头的任务。在镜头之外,有些员工会讨论如何面对快速工作以实现公司指标的压力,因而休息时间也大大减少。有些Samasource的工人现在虽然是自由职业者,可以在任何地方工作,但每当工作时都会一个网络摄像头监视他们的工作。

伊德里斯·阿布迪(左)

我们在办公室内看到的所有工人都没有得到任何适当的符合人体工程学的支持,经常伏在电脑前连续疯狂点击鼠标数小时——这对眼睛和身体都会造成一定压力。公司表示会考虑解决这个问题。

对工作的抱怨在这个行业内并不少见,不过时常会得到快速的跟进和解决。

Samasource表示,公司在发展中国家至少影响了近5万人;他们要么在Samasource工作,要么他们的家人在Samasource工作。根据公司对前员工进行的问卷调查,公司发现近84%的前员工会选择接受更正式的工作,或接受高等教育。

其中一个从此走向成功的员工叫伊德里斯·阿布迪(Idris Abdi)。25岁的阿布迪在工作后,得以搬离贫民窟。

“这份工作改变了我的……方方面面,”他说,“改变了我的认知,它让我看到未来的希望。”(小白)

看到他们的,我们才知道我们的数据标注工作室比他们好多了。


推荐文章

曾经,机器人的出现改变了整个制造业经济领域。如今,人工智能和自动化以同样的方式颠覆着信息工作,人类开始逐渐将认知劳动交付给计算机。例如,在新闻业中,数据挖掘系统会提醒记者编辑们注意潜在的新闻选题,而新闻机构则为观众提供了获取信息的新方法。自动报道机制如今已可以覆盖财经、体育等品类的新闻。当这些智能技术渗透到各行各业中时,人们通常会好奇传统工种和劳动力将受到怎样的冲击。本期全媒派带来独家编译,看看在人工智能加入的新闻业中,做新闻的会是谁?他,或者说它们,又会怎么做新闻?强化而非替代西北大学助理教授及计算机新闻实验室总监Nicholas Diakopoulos在其最新著作《自动新世界:算法如何改写媒体》中通过一系列论证表明,即使在人工智能主导的未来,仍然会存在很多人类新闻工作者。但是,这些人的工作,角色以及工作内容都会有所改变。人力将与算法结合,以释放人工智能的能力,同时适应其局限性。据估计,以目前的人工智能技术水平,记者的工作中只有约15%可以实现自动化,编辑则只有区区9%。在好莱坞大片以外的真实世界中,人类仍然在几个新闻业关键领域对人工智能保持优势,包括复杂沟通,专业思考,适应性,以及创造力。报道,倾听,回应和推拉,平衡信源,最后将这些环节打通,用创造力输出内容,记者工作的每一步都不可或缺,而人工智能甚至无法完成其中任何一个。但是,人工智能可以强化人类的工作成果,以帮助提高工作效率或质量。它能为深化新闻报道带来新机,让报道变得更加个性化。新闻编辑部的工作总是在适应新技术的浪潮,摄影、电话、电脑,甚至是小小的复印机。记者也必将适应与人工智能的协同作业。作为一种技术,人工智能已经并将持续改变新闻工作,但它非但不会取代一个训练有素的新闻人,反而会让他变得更强。新工种的出现Nicholas Diakopoulos发现,人工智能技术似乎正在为新闻界创造新的工作类型。以美联社为例,该社在2017年推出了计算机视觉人工智能技术,用以标记每天处理的数千张新闻照片。系统可以在标注中指明这张照片包含了什么内容或者哪些人,摄影风格如何,有无暴力画面等信息。该系统将图片编辑从大量的标注工作中解放出来,从而拥有更多的时间来思考他们应该发布什么。但无论在研发端还是编辑端,对这一系统的开发都需要大量的工作:编辑必须弄清要标记的内容以及算法对这一任务的匹配度,然后开发新的测试数据集来评估效果。完成所有操作后,他们仍然需要监控系统,手动批准每张照片的建议标签来确保高准确度。负责该项目的美联社高管Stuart Myles告诉Nicholas Diakopoulos,这项工作耗时数年,十多名编辑、技术和行政人员参与其中。大约三分之一的工作涉及新闻专业知识以及一些特别难以实现自动化的判准。虽然在将来人力监督有望削减,但随着技术系统的发展和扩大,编辑的工作仍将不可或缺。半自动化内容制作在英国,RADAR项目每月通过半自动化模式输出约8000篇本地化新闻。该项目由6名记者运营,他们找到按地理区域划分的政府数据集,筛选出有趣且有新闻价值的选题,然后将这些想法发展为数据驱动的报道模板。模板通过编码,将每条文本和数据归属的地理位置一一对应。例如,一篇报道可以讨论英国的人口老龄化问题,并通过布里斯托不同的本地化统计数据,向卢顿市的读者展示他们所属社群的变迁情况。这些报道会由通讯社发送到当地媒体,并由他们决定是否发布和如何发布。在这一方法中,记者和自动化高效结合:记者利用他们的专业知识和沟通技巧,为数据预设一些可能的“故事线”。他们也会与不同信源讨论来获取某个问题的全国普适视角,从而编写报道模板。在这个过程中,自动化充当了新闻生产小助手的角色,使同一文本能够适应不同的当地环境。RADAR记者使用一种名为Arria Studio的工具,它可以让内容生产者一睹自动化内容在实践中呈现的样子——它看起来就像一个复杂版的Word。作者写出各种碎片式的文本,而这些文本则由if- then- else(如果-那么-否则)的代码规则驱动。例如,在地震报告中,我们可能需要不同的形容词来描述8级地震和3级地震。因此,我们可以这样设计代码:如果地震强度>7,那么输出文本“强烈地震”。否则,如果地震强度<3,输出文本“小型地震“。像Arria 这样的工具还包含强大的语言功能,例如自动共轭动词或拒绝使用名词,从而更轻松地处理需要根据数据进行更改的文本。Arria的创作界面使得记者可以专注于自己擅长的事——从逻辑上构建引人入胜的报道情节并制作富有创意的非重复性文本。但他们也需要一些新的方法来构思报道。例如,模板的编写者在做一个报道前,得了解数据能做到什么。他们需要想象数据能如何丰富角度或使叙事变得多样,同时能勾画出驱动这些变化的内在逻辑。监督,管理或编辑自动化内容的工作人员也越来越多地出现在新闻编辑室中。质量和准确性是新闻业界最关注的问题。为此,RADAR开发了一个三阶段质检流程:首先,记者将阅读所有的自动化内容;然后,另一位记者将报道中给出的所有结论回溯到原始数据源;最后,编辑会再一次检查报道模板中的逻辑来排除错漏。这几乎就像一个软件工程师团队在调试脚本时所做的工作,而这也是人类为了让自动化正常运转而不得不做的事。终结付费墙?内容生产并不是人工智能大施拳脚的唯一赛道。通过机器学习的算法,新闻媒体还可能发展出新的订阅模式,实现对每一位用户内容消费的量身定制。通过调整订阅策略以及付费墙设置,新闻媒体一直在试图平衡自由浏览量和用户阅读权限——也就是在寻找广告收入和订阅收入之间的最佳平衡点。当然,这个神奇的平衡点并不存在。有的人可能在一次浏览后就会订阅,有的人则需要更长时间才能做出付费转化的决定,而有些人根本就不会订阅。这些用户维度的个人差异基于大量指标而变化,例如地理位置、内容消费习惯、访问行为、主题、设备等。在新技术的加持下,内容供应商不再需要通过单个数字来定义最佳策略,甚至不需要确定一个引导读者订阅的特定路径。如今,他们可以实时为每个用户生成最佳规则,向那些最有可能回应的人提供高价值的优惠。计算机无法自主制定营销策略,但它无疑可以帮助我们对营销策略进行优化。美国公司Piano用了大约一年时间来改进和测试用户可能性模型。他们的机器学习系统可以筛选出所有浏览器级别的可用数据,从而能够预测并驱动用户行为。Piano的第一个可能性模型就致力于预测用户订阅的可能性。以下是它的工作原理:通过与全球各地传媒公司的关联,Piano已经能够分析数百个订阅网站和数十亿的每月用户互动。这一独特的优势使Piano工作人员对营销订阅的因素有了一些深入认知。更重要的是,它为我们观测影响订阅可能性因素提供了确切的数据。某些数据点与用户转化的可能性密切相关。例如,用户每天或每周访问某个网站的时间,或者他们访问的设备类型等因素,都会定期形成可预测的模式,从而展示用户最终的行为方式。动态付费墙规则是一种新兴业务,它的背后冉冉升起的是一个定价和业务规则完全动态并为每个用户定制的世界。虽然“订阅经济”已经取得了很大成就,但我们认为这种转变比从一次性支付转向经常性支付更重大。这将是一个全新的世界,企业生产的所有内容都可以实时响应每一个用户、每一份商机。深耕人力资源如前文所述,人工智能和自动化非但没有减少新闻业的岗位,反而正在创造新工作,并改变现有的工作。今后,记者需要接受培训,以设计、更新、调整、检验、纠正、监督以及维护这些技术系统。许多人可能需要学会和数据一起工作,用逻辑思维来处理数据,多熟练掌握一些计算机编程基础知识也是不会错的。随着这些新技术的发展,确保它们是优质的工作非常重要——人们不能只是在更大的生产机器中成为齿轮,这种新型混合劳动的管理者和设计者需要考量人类对自主性、有效性和可用性的关注。Nicholas Diakopoulos乐观地认为,在这些技术中聚焦人类经验,将使内容工作者成长,让社会蓬勃发展,让人工智能和自动化交出更好的答卷。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。